જો $f\left( n \right) = \left[ {\frac{1}{3} + \frac{{3n}}{{100}}} \right]n$ , જ્યાં $[n]$ મહત્તમ પૂર્ણાંક વિધેય હોય તો $\sum\limits_{n = 1}^{56} {f\left( n \right)} $ ની કિમત મેળવો.
$56$
$689$
$1287$
$1399$
જો વિધેય $f : R \rightarrow R$ એ માટે $3f(2x^2 -3x + 5) + 2f(3x^2 -2x + 4) = x^2 -7x + 9\ \ \ \forall x \in R$ વ્યાખ્યાયિત હોય તો $f(5)$ ની કિમત મેળવો.
વિધેય $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ નો વિસ્તાર મેળવો.
વિધેય $f(x)$ એ $f(x)=\frac{5^{x}}{5^{x}+5}$ મુજબ આપેલ છે, તો શ્રેઢી $f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots \ldots+f\left(\frac{39}{20}\right)$ નો સરવાળો ...... થાય.
જો $f(x + ay,\;x - ay) = axy$, તો $f(x,\;y) =$
અહી વિધેય $\mathrm{f}: N \rightarrow N$ આપેલ છે કે જેથી દરેક $\mathrm{m}, \mathrm{n} \in N$ માટે $\mathrm{f}(\mathrm{m}+\mathrm{n})=\mathrm{f}(\mathrm{m})+\mathrm{f}(\mathrm{n})$ થાય. જો $\mathrm{f}(6)=18$ હોય તો $\mathrm{f}(2) \cdot \mathrm{f}(3)$ ની કિમંત મેળવો.